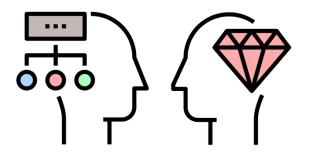
Imperial College London

Machine Learning for Materials

Zhenzhu Li

Department of Materials



Outline

- Optimization strategies
- RL in focus
- Alloy design
- Multi-objective

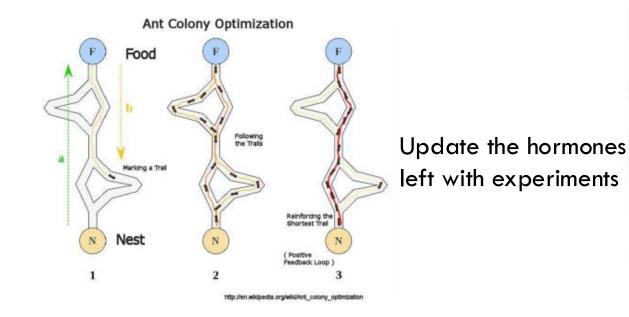
Optimisation strategies

Nature-inspired algorithms

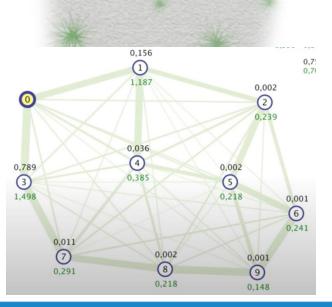
Optimisation strategies

https://www.youtube.com/watch?app=desktop&v=u7bQomllcJw

Optimisation strategies: ACO



	Ant colony optimization algorithm		
	5	12	WIKIPEDIA The free Encyclopedia
	6	60	Travelling salesman problem
	7	360	Exact algorithms [edit]
	8	2 520	The most direct solution would be to try all permutations (ordered
	9	20 160	combinations) and see which one is cheapest (using brute-force search). The running time for this approach lies within a polynomial factor of $O(n!)$
	10	181 440	the factorial of the number of cities, so this solution becomes impractical even for only 20 cities.
at a f	11	1814 400	
Actor	12	19958 400	(n_{1})
	13	239 500 800	
	14	3 113 510 400	
	15 4	3 589 145 600	2
		3837184 000	<u> </u>
	I ►I •0 2:26/19		v in m / e /L
	• • 2.2671	9.20	¥ 👘 🚥 🖓 🛟



()

0

 \bigcirc

Optimisation strategies

Simulife Hub

@wallcraft-video · 18.1K subscribers · 24 videos

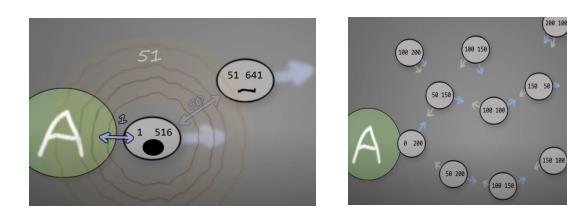
Evolution simulation, algorithms, swarm intelligence, neural networks, Al.... >

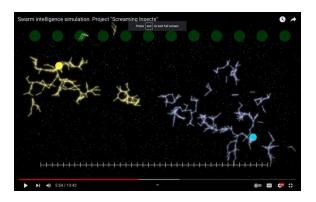
patreon.com/SimulifeHub

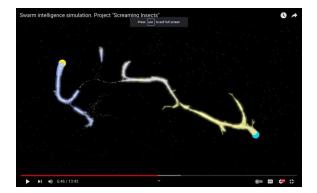
200 0

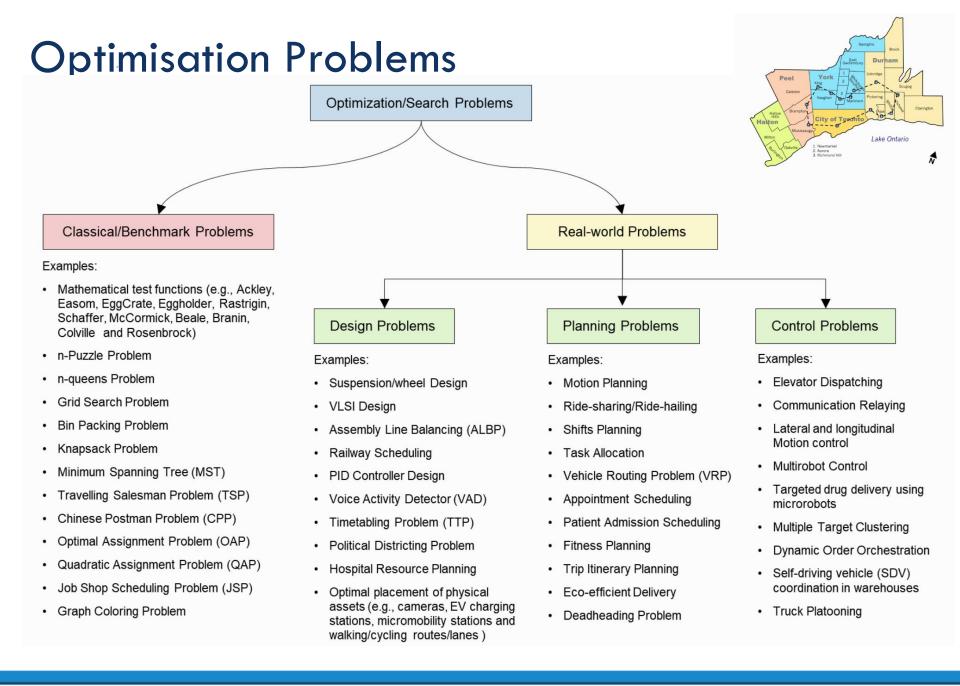
 \triangle Subscribed \lor Join

Swarm intelligence







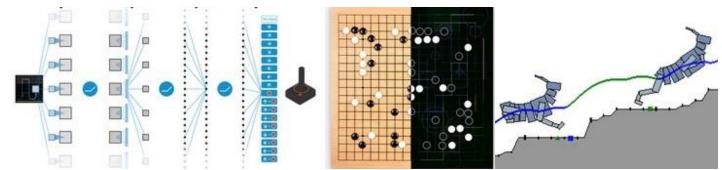


Optimisation strategies

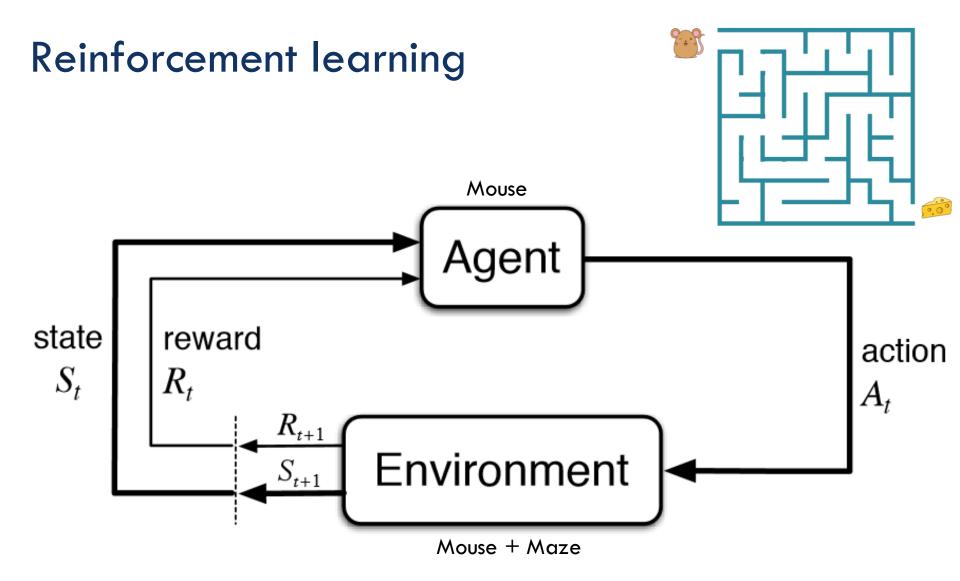
Ethology (the study of animal behavior) is the main source of inspiration of swarm intelligence algorithms such as Particle Swarm Optimization (PSO), Ant Colony Optimization (ACO), Artificial bee colony (ABC), Bat algorithm (BA), Social Spider Optimization (SSO), Firefly algorithm (FA), Butterfly Optimization Algorithm (BOA), Dragonfly Algorithm (DA), Krill Herd (KH), Shuffled Frog Leaping Algorithm (SFLA), Fish School Search (FSS), Dolphin Partner Optimization (DPO), Dolphin Swarm Opti-

Reinforcement learning in the wild

Boston Robotics



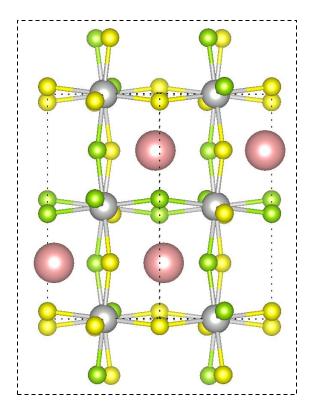
Deep Q Learning network playing ATARI, AlphaGo, physically-simulated quadruped leaping over terrain.

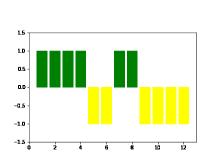


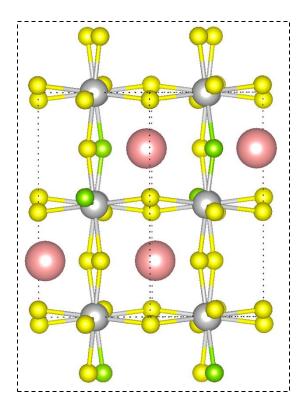
Materials search space

(BaZrS_xSe_{3-x})₄

Clean energy materials

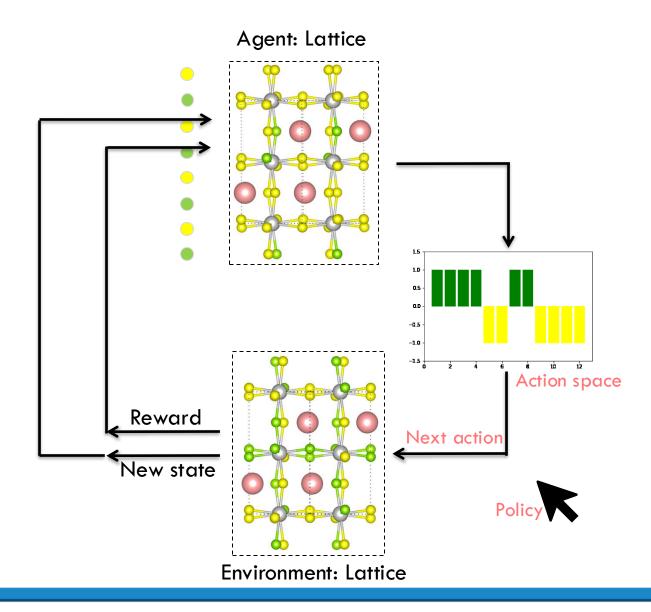






12 anion sites, how many possibilities?

Reinforcement learning

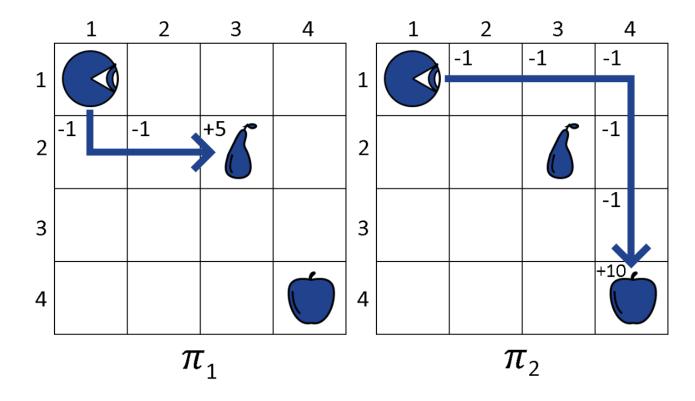


Policy

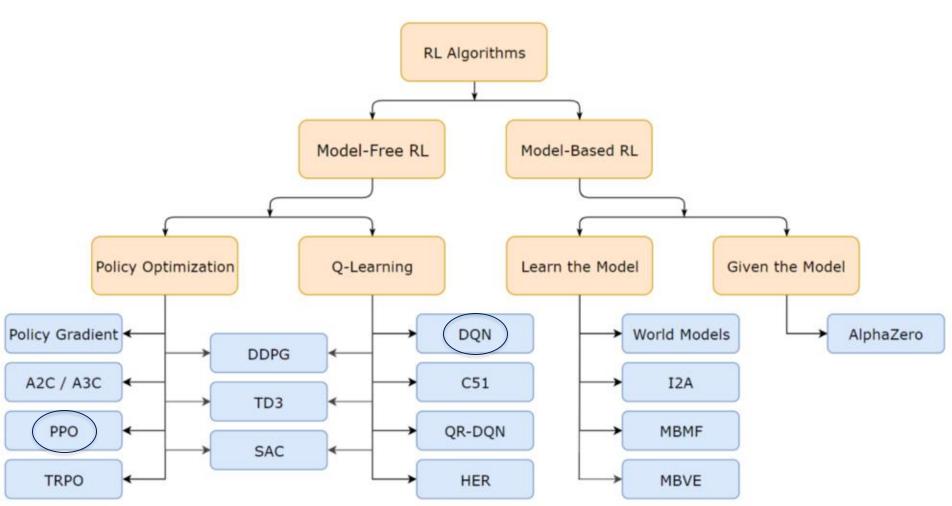
A policy $\pi(s)$ comprises the suggested actions that the agent should take for every possible state $s \in S$.

•
$$U(\pi_1) = -1 - 1 + 5 = +3$$

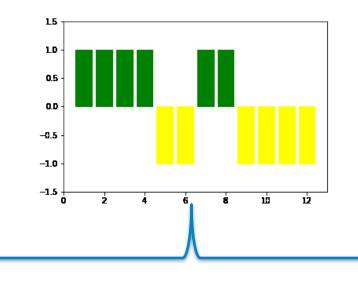
•
$$U(\pi_2) = -1 - 1 - 1 - 1 - 1 + 10 = +5$$



Policy



Action space



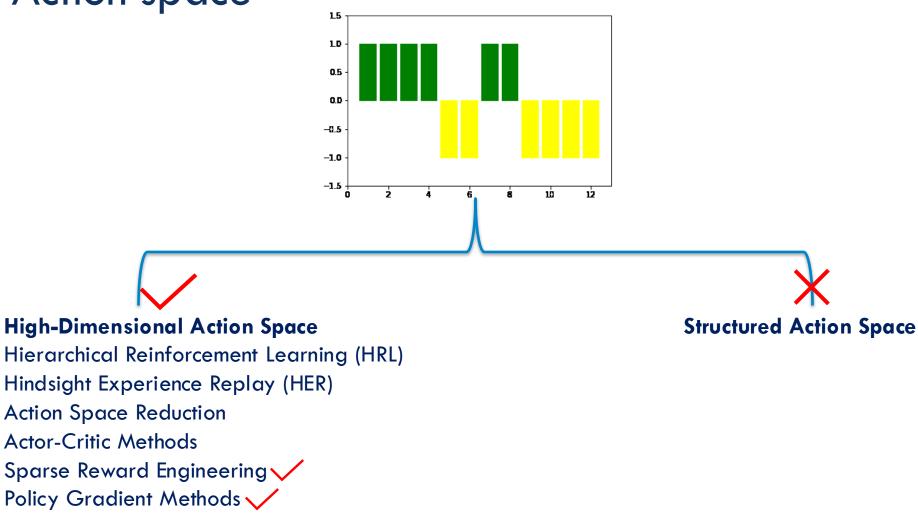
2¹² = 4096

Discrete Action Space

Q-Learning Deep Q-Networks (DQN) SARSA (State-Action-Reward-State-Action) Monte Carlo Methods

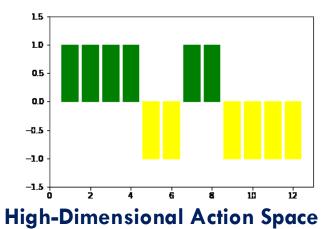
Continuous Action Space

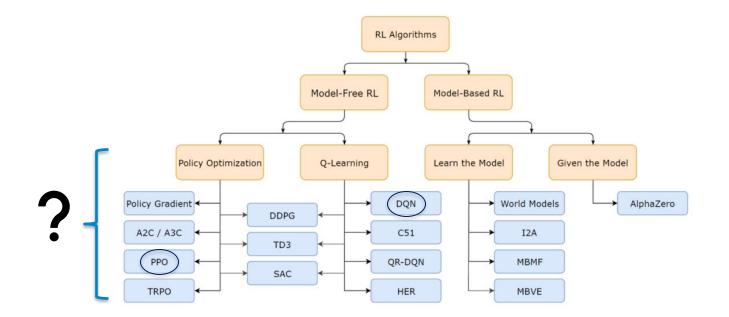
Deep Deterministic Policy Gradient (DDPG) Proximal Policy Optimization (PPO) Trust Region Policy Optimization (TRPO) Soft Actor-Critic (SAC)



Function Approximation Techniques

Action space



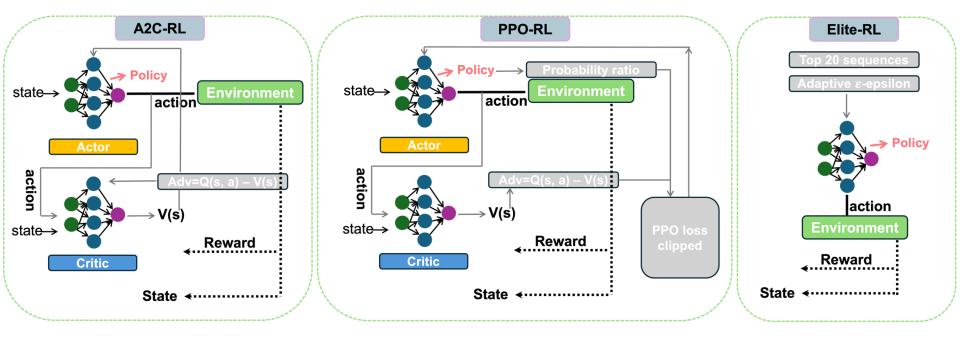


How to learn from memory

Deterministic: $\pi(s) = a$ Stochastic: $\pi(a|s) = \mathbb{P}(A = a|S = s)$

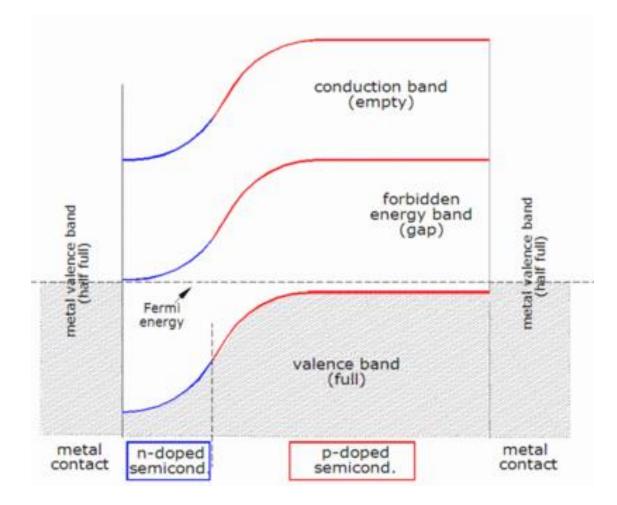
Policy:

Epsilon greedy action selection + next action is always the best action in previous 20 memories.

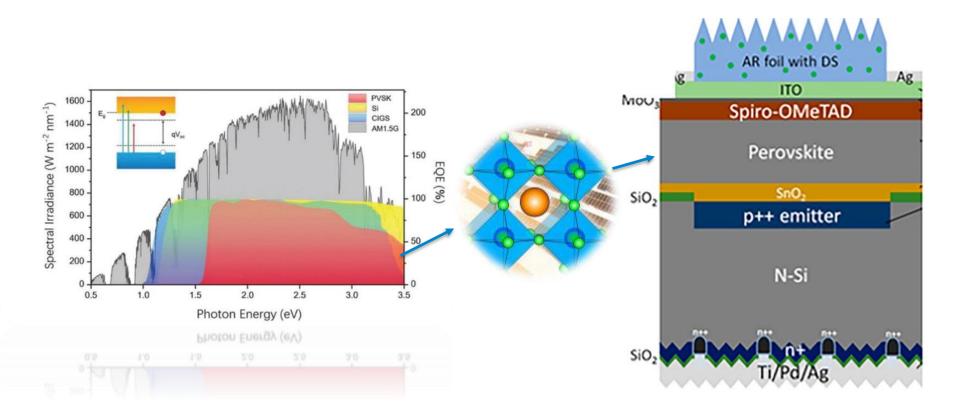


An API standard for reinforcement learning with a diverse collection of reference environments

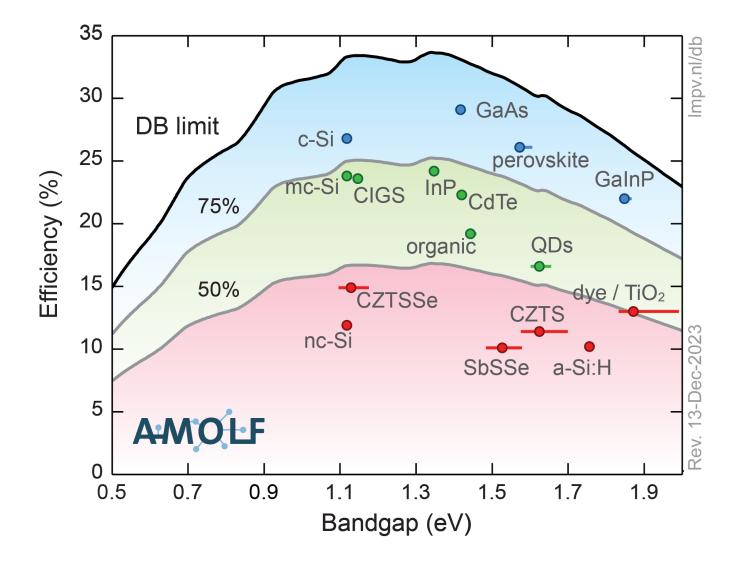
Photovoltaic effect



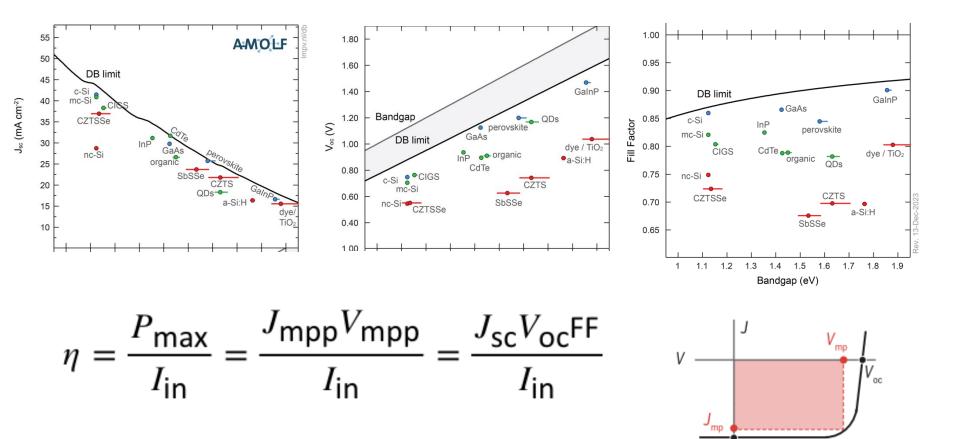
Photovoltaic device



Detailed balance efficiency limit (Shockley Queisser Limit)

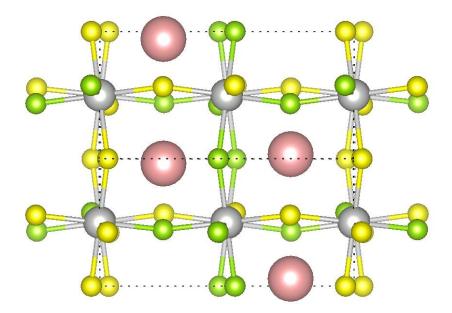


Detailed balance efficiency limit (Shockley Queisser Limit)

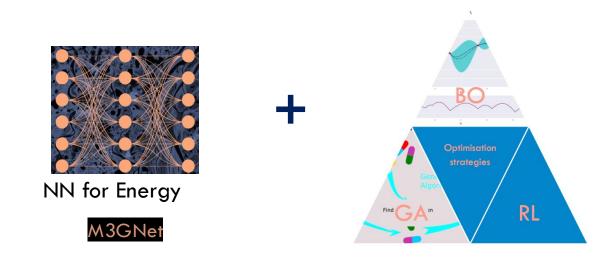


sc

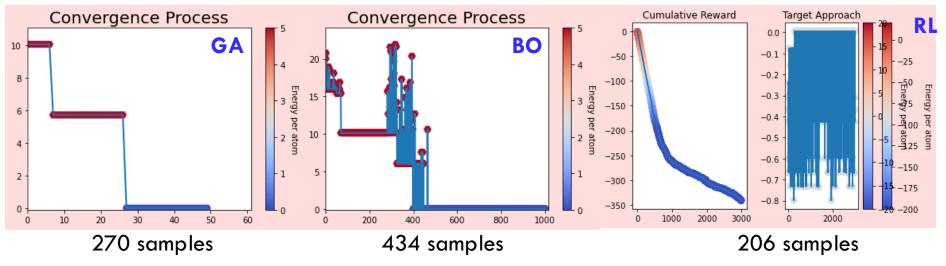
Stable photo-absorber



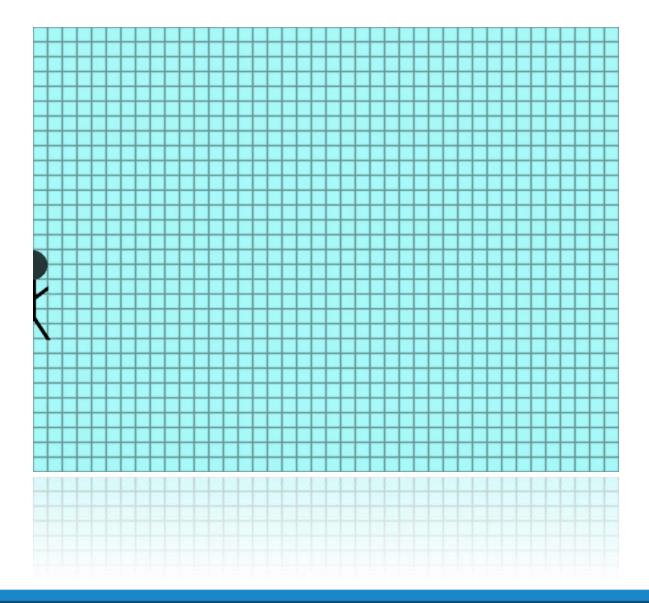
Model architecture



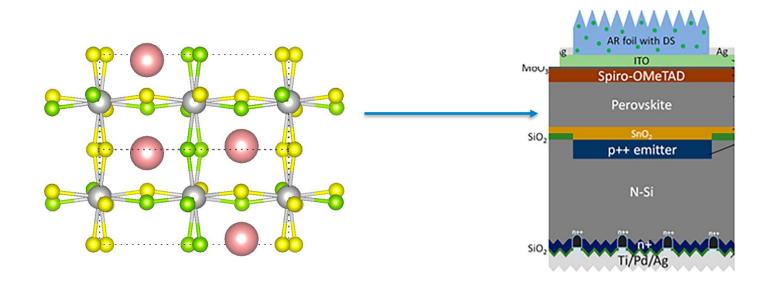
Single-objective: find the lowest energy configuration



Visualize the RL process

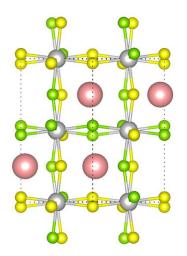


Stable and high power conversion efficiency photoabsorber



 $(BaZrS_xSe_{3-x})_4$: Find targeted composition with highest photo conversion efficiency

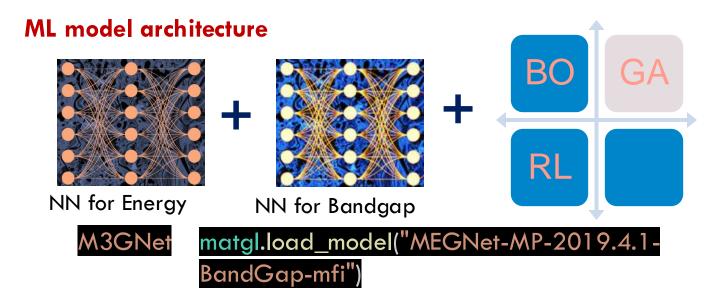
$$\eta = \frac{P_{\max}}{I_{\text{in}}} = \frac{J_{\text{mpp}}V_{\text{mpp}}}{I_{\text{in}}} = \frac{J_{\text{sc}}V_{\text{oc}}\text{FF}}{I_{\text{in}}}$$



Problem: large chemical search space

- Stability: energy
- ≽ Bandgap

 $(BaZrS_xSe_{3-x})_4$: Find targeted composition with highest photo conversion efficiency



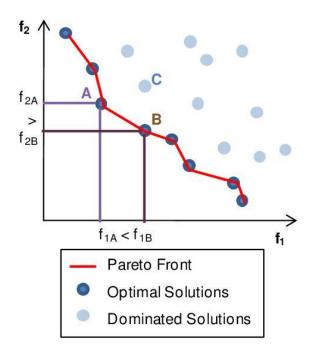
Shockley-Queisser-limit: PCE

Single Objective/Reward function

Pareto front

Objective = -E + PCE

• Cannot promise the increases of E and PCE are positively correlated.

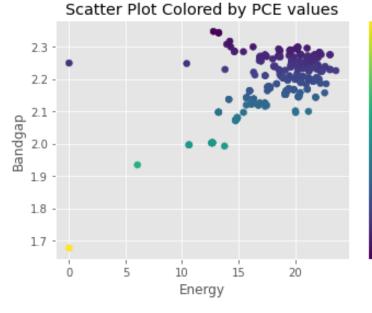


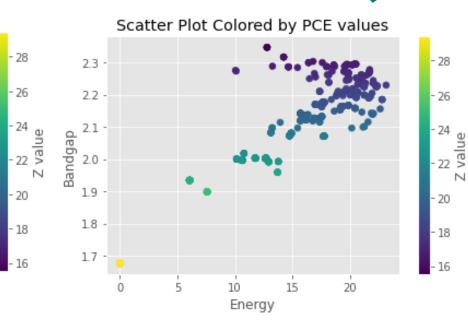
Single Objective/Reward function

Pareto front

GA

DISTRIBUTED EVOLUTIONARY ALGORITHMS IN PYTHON





272 samples

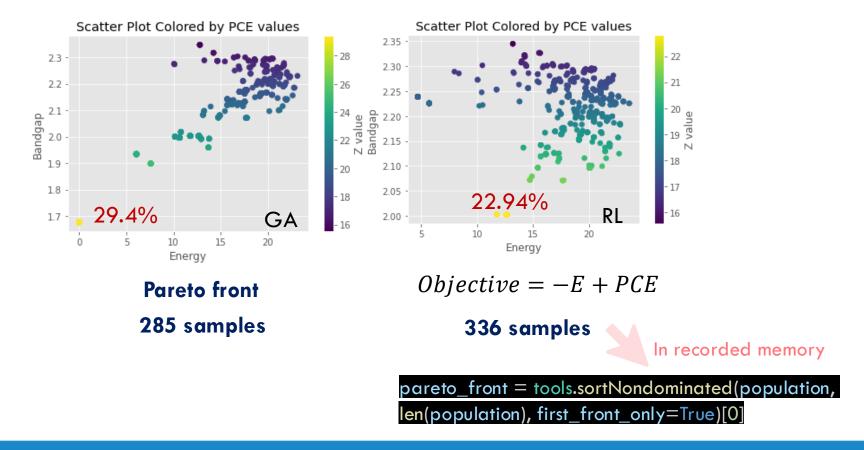
285 samples

pareto_front = tools.sortNondominated(population,

len(population), first_front_only=True)[0]

Single Objective/Reward function

Multi-objective: find the configuration with highest PCE, Pareto Front search



Global optimisations

Conclusions

Navigated materials design ➢ Energy

Multi-objective materials design > PCE & Stability

Acknowledgements

Prof. Aron Walsh Xia Liang Sean Kavanagh Xinwei Wang Johan Klarbring Youngwon Woo

Collaborators Prof. Cecilia Mattevi, Imperial Dr. Alex Ganose, Imperial Dr. Ji-Sang Park, SKKU Tian Xie, Microsoft Alex Jen, CityU HK Enzheng Shi, Westlake Yunfan Guo, ZhejiangU

SCHMIDT FUTURES

MATERIALS AND MOLECULAR MODELLING HUB

Imperial College London

Imperial College London

Thank you very much for your attention!